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A DISCUSSION OF 
HALPHEN'S  METHOD FOR SECULAR PERTURBATIONS 

AND ITS  APPLICATION TO THE  DETERMINATION OF LONG 
RANGE EFFECTS  IN  THE  MOTIONS OF CELESTIAL  BODIES. 

PART 1. 
by 

Peter Musen 
Goddavd  Space Flight Center  

SUMMARY 

The  long  range  effects  caused by the moon  and  the  sun are of primary 
importance in establishing  the  stability of highly eccentric  satellite  orbits. 
At present no complete  analytical  theory  exists  which  can  treat  such  orbits. 
It is shown here  that  Halphen's  method of treating  secular  planetary  effects 
can, by means of step-by-step  integration,  also  be  used  to  determine  long 
range  lunar  effects in the  motions of artificial  satellites.  Halphen's  method 
permits  the  numerical  integration of long  range  lunar effects over  aninterval 
of a few tens of years.  The  long  range  solar  effects  can be treated by 
averaging  the  disturbing  function  over  the  orbit of the  satellite.  Halphen's 
method is applicable  to  the  determination of long  range  ("secular")  effects 
in the  motion of minor  planets  over  the  interval of hundreds of thousands of 
years.  We assume  that  no  sharp  commensurability  between  mean  motions 
of the  disturbed  and  disturbing  bodies  does  exist. A complete  theory of 
Halphen's  method is presented in modern  symbols.  Goursat  transformations 
and a summability  process are applied  to  speed  the  convergence of series 
which  appear  in  the  theory. 

i 





CONTENTS 

Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

SECULAR DISTURBING FUNCTION . . . . . . . . . . . . . . . . . . . .  2 

ON THE FORM O F  THE BASIC  DYADIC 0 IN  TERMS O F  
INVARIANTS O F  0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21 

EXPRESSIONS FOR THE  COEFFICIENTS A AND B IN 
TERMS  OF INVARIANTS O F  0 . . . . . . . . . . . . . . . . . . . . . .  28 

EQUATIONS FOR  SECULAR VARIATIONS O F  ELEMENTS . . . .  44 

CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 

ACKNOWLEDGMENT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47 

Appendix A . Collection of Formulas . . . . . . . . . . . . . . . . . . .  49 

iii 





A DISCUSSION OF 
HALPHEN'S  METHOD FOR SECULAR PERTURBATIONS 

AND ITS  APPLICATION TO THE DETERMINATION OF LONG 
RA.NGE EFFECTS IN THE  MOTIONS OF CELESTIAL  BODIES. 

PART 1. 

by 
Peter  Musen 

Goddurd  Space Flight  Center 

INTRODUCTION 

In treating  the  problem of the  orbital  stability of celestial  bodies,  the  long  range  effects  are of 
primary  importance; but no complete  analytical  theory  considering  these  effects  exists  at  present 
for  large  values of the  eccentricity,  inclination, and semimajor axis. To  obtain  information  about 
the  changes of its  orbit  over a long time  interval,  and  hence  information  about  the  lifetime of, say, 
an  artificial  satellite, we have  to  resort  to  numerical  integration. 

Methods  based on the  use of an  unaveraged  disturbing  function,  such as those of Cowell or  Encke, 
contain  both  the  short  and  long  period  terms;  and  in  the  case of artificial  satellites,  they  require  that 
the  interval of integration  be  much  less  than  the  satellite's  period, thus creating a large  accumulation 
of round-off e r ro r s .  The  main  long  range  effects in the  elements  are  produced by the  long  range 
te rms  in the  disturbing  function  and by their  cross-actions.  The  short  period  terms  can  also  produce 
long  range  effects  through  their  mutual  cross-actions in higher  order  approximations,  but  such  effects 
are very  small  (Reference 1) and  can  be  neglected  over a very long  time  interval. For these 
reasons,  and  to  diminish  the  accumulation of round-off e r ro r s ,  it is necessary at the  very  be- 
ginning  to  remove  the  short  period  terms  from  the  disturbing  function  or  from  the  components of the 
disturbing  force.  The  problem  thus  formulated  does  not  differ  from  the  problam of determining  the 
secular  perturbation of planets  and  comets by means of numerical  integration  using  the  Gaussian 
method  (Reference 2). With the  advent of modern  electronic  equipment,  such a solution of the  problem 
has  become  possible. 

The  use of Halphen's  form of the  Gaussian  theory  (Reference 3) was suggested by the  author as 
a practical  method  for  determining  the  long  range  effects  through a step-by-step  integration  (Refer- 
ence 4). Previously  Halphen's  method was not  in use, probably  because of seveyal  numerical  eyroys 
which  appear i n  the original  publication.  They  weye  all  corrected  by  Goriachev  (Reference 5), whose 
name  should  be  associated  with  the  method as well;  andin its present  form  the  method  should  properly 
be  called  the  Halphen-Goriachev  method.  Some  parts of Halphen's  original  exposition  can  easily be 
recognized  from  the  modern  standpoint as an  application of the  calculus of dyadics  (matrices)  in a 

. hidden form.  In  the  present  exposition we shall resort  to  vectors  and  matrices.  The  reason  for this 
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is not  merely  the  wish  to  modernize  the  notations,  but  because  the  application of vectors and matrices 
removes all the  ambiguities  and  difficulties  connected  with  determining  direction  cosines when sca la rs  
are  used.  The  latter  problems are, on some  occasions,  sources of e r r o r s  in  Halphen's  original 
presentation. 

In Goriachev's  work, all the formulas  given  in the final  collection  are  correct;  however,  there 
are some misprints  in tlze theoretical  exposition.  They  are  corrected  here. The  author  has  suggested 
(Reference 4 )  the  use of the  Goursat  transformation  (Reference 6 )  and of the  E-summability  process 
to speed  the  convergence of hypergeometric series which  appear  in  the  Halphen-Goriachev  method 
and  to  facilitate  the  numerical  computation. 

A group  working in celestial  mechanics at Goddard  Space  Flight  Center has applied  Halphen's 
method of secular  perturbations  to  the  motions of planets,  comets,  and  artificial  satellites.  The 
Halphen-Goriachev  method was carefully  compared with some  other  existing  methods  before it was 
recommended  for  large  scale  use. At present, no exposition of Halphen's  method  exists  in  English. 
In undertaking this exposition,  the  author was also  motivated by the wish to  present  an  interesting 
and  important  theory  to  the  community of English-speaking  astronomers. 

SECULAR  DISTURBING  FUNCTION 

The  following  notation will be  used  to  describe  the  motion of the  disturbed body: 

r the  position  vector  with  respect  to  the  central body, 

ro the  unit  vector  in  the  direction of r, 

P the  unit  vector  directed  from  the  central body toward  the  osculating  perigee, 

R the  unit  vector,  normal  to  the  osculating  orbit  plane,  in  the  direction of angular  momentum, 

Q = R X P ,  

e the  osculating  eccentricity, 

a the  semimajor  axis, 

b = a 41 - e 2  , the  semiminor  axis, 

v the  true  anomaly, 

E the  eccentric  anomaly, 

g the  mean  anomaly. 

Primed  notations will  be  used  to  describe  the  motion of the  disturbing body. The  position  vector 
of the  disturbing  body  relative  to  the  disturbed body will  be  designated by p, where = r '  - r .  
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Let  m '  be  the  mass of the  disturbing body, f be  the  gravitational  constant,  and m be  the  mass of 
the  disturbed body.  The mass of the  central body will  be  designated by M. 

If the  disturbing  force 

is developed  into a double  Fourier  series  with  arguments g and 
opment is the  secular  disturbing  force [Fl and we have 

(1) 

g', then  the  constant  term  in  the  devel- 

Thus [Fl is deduced  from  Equation 1 by applying a double process of averaging  over  the  orbit of the 
disturbing body  and over  the  orbit of the  disturbed body. 

Writing  the  "area  integral"  for  the  disturbing body in  the  form 

we have 

Thus  the  indirect  part ( -  r J / r '  3 ,  of the  disturbing  force  does  not  produce any  secular  effects and 
Equation 2a takes  the  form 

Let  us first apply  to F the  process of averaging  over  the  orbit of the  disturbing body. This  averaged 
force will  be  designated by F, : 

F, = fm. 2n lozT p3. P dg' 

In the  process of determining F, the  position of the  disturbing body is imagined  to  describe  the  com- 
plete  osculating  ellipse.  However, we are  interested  neither  in  short  period  terms  nor  in knowing at 
what  moment of time  the  disturbing body wil l  occupy a particular  position  in its ellipse.  This  process 
of averaging is evidently a purely  geometrical  one. 
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The  geometricallocus of vectors p is an  elliptical  cone  with its apex  in  the  disturbed body. 
Taking  Equation  2b  into  account,  we  can  also  write 

If we consider two  neighboring  position  vectors  and  tdpwith  respect  to  the 
r ’ d v  ‘1 2 represents   the  area of the  elementary  sector  with  the  apex  in  the 
Taking  Equation 5 into  account  and  setting 

dp = 
m ’  r f 2  dv’  

2rra’b’ ’ 

we deduce 

FO 

disturbed body m, then 
central body (Figure 1). 

This  integral is taken  along  the  ellipse of the  disturbing body  in  the  direction of the  motion.  Equation 
6 represents  the  Gaussian  result: F, is equal  to  the  attraction of an elliptic  ring  ovey  which  the 
mass  is  distributed  proportionally  to  the  area of the  sector  described by  the  radius  vector r’ .  

Let  be  the  position  vector of the  central body relative  to  the  disturbed body.  Evidently 

p ,  = - r .  

Also le t  

h = p ,  . R ’  

be  the  projection of p o  on R ’ .  We have 

p = p 0  t r ’  , 

d r ‘  = dp , 

dr 

Figure  1-Area of the  elementary  sector. 

p ,  . p X d p  = p ,  . ( p ,  X d r ‘  + r ’  X dr ‘ )  

= p ,  . R’ r ’ 2 d v ‘  = h r f 2 d v ’  
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I 

o r  

P o  P x dP 
r ' 2 d v f  = h 

A s  a result of the last equation,  Equation 5 becomes 

Equation 7 introduces a dyadic 

closely  associated  with  the  problem of determining secular perturbations. 

Designating  the  unit  vector in the  direction of p by and  substituting p = p p o  into  Equation 8, we 
can  reduce ~p to  the  simpler  form 

Cp = $!popo X d p '  

The  peculiar  characterist ics of the dyadic 9 are that  its  first  scalar  invariant  and  its  vector are both 
equal to zero.  

We have 

and 

@X = i { p o  X ( p o  X dp') . 

Developing  the  double  cross-product  in  the  form 

$)x = ! j f ( p o p o . d p o - p o . p o d p o )  

and  taking 
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into  account,  we  deduce 

or, taking 

into  account  and  putting 

y = -  1 frn’ 
2 n a ’ b ’ h  P o  ‘ @ ’ P O  

we  can  write 

F, = grad  . 
P o  

By substituting 

p = x i  + y j  + zk , 

p X dp = ( y d z - z d y )  i + ( z d x - x d z )  j t ( x d y - y d x )  k , 

into  Equation 8, the  following  expressions  for  the  components of ID are obtained: 

11 = &J- 
x ( y d z - z d y 1  . 

P 3  

0 2 2  0 3  
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'23 = '32 
y ( x d y - y d x )  = $4 z ( z d x - x d z )  ; 

P3 P3 

The  process of integration is performed  in  the  direction of motion of the  disturbing body. 

We assume  that  the  original  system of coordinates  and  the  system  attached  to  the  apex of the 
cone are both  right-handed  systems. By rotating  the  system  associated  with  the  apex of the  cone it 
is always  possible  to  reduce  the  equation of the  cone  to its normal  form 

and at the  same  time to cause all points of the  ring  to  have  positive  z-coordinates. Also, without loss 
of generality  we  can  assume  that p ,  q, and r in  Equation  20a satisfy the  conditions p 5 q < 0 < r .  

The  direction of integration in Equations 14-19 is positive in the  system  defined by the  unit  vec- 
t o r s  P', IJ', H'. However,  it  can  be  positive or  negative  in  the  system (i ,  j, k )  of principal  axes of the 
cone.  The  direction of integration  will  be  positive  in  both  systems i f  R '  . k > 0 and it will  be  positive 
in (P',  Q', K '  ) and  negative  in ( i ,  j , k )  i f  R '  . k < 0 . 

Let 

be  the  position  vector of the  apex (of the  disturbed body)  with respect  to  the  center of the  ring. 
We agreed  to  choose  the  direction of k in  such a way that  the  z-coordinates of points of the  portion of 
the  plane  limited by the  ring  will  be  positive  in  the  system (i, j , k ) ;  in  other  words  we  must  have 

From  this we  conclude  that  the  direction of integration  will  be  positive  in  both  systems if  y < 0 and it 
will  be  positive in the  system (P', Q ' ,  R' ) and  negative  in (i,  j , k ) i f  y > 0 . A simple  geometrical  draw- 
ing  will  confirm  this fact. The  direction of integration  can  always  be  taken as positive  in  the  system 
( i ,  j, k) i f  the  factor 

" 
I Y I  = - 
Y sign y 
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is attached  to  the  integral. We shall combine  this  factor  with  the  factor frn'/.rr a ' b ' h  and  we shall post 
pone its introduction until the  development is completed. In order  to  investigate the form of @ with 
respect  to  the  system (i, j , k) let  us  choose as the  contour of integration  the  ellipse 

2 = 1 .  J 
With the  condition  imposed by  Equation 21 the  preceding  Equations 14-19 become 

We have, in the  different  quadrants of the  ellipse  given by Equations 21, the  following: 

I t + - t - - + - 

IV + + t - - - + + 

From this table  and  Equations 22, we see  that 

and,  because of the  symmetry of the  contour of integration,  each of the  integrals  in  Equations 22 is 
equal  to  four  times  the  integral  taken  over  the first quarter  of the  ellipse  (Equations 21). Combining 
in  Equations 23 the  elements  which  are  symmetrical  with  respect to the X and Y axes, we also con- 
clude  from  the  above  table  that 

'12 = '23 = '31 = 0 ,  

and @ takes its normal  form 
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in  the  system of the  principal  axes  of  the  cone.  (Vectors i ,  j, k a r e  the  unit  vectors  along  the  princi- 
pal  axes of the  cone.) In other  words,  both  the  potential 

and  the  equation of the  cone  can  be  reduced  to  their  normal  forms  simultaneously. 

In order  to  compute all ,  @ 2 2 ,  @33 in  the  system  defined by the  principal  axes, we  can take the 
curve  defined  by  the  equations 

as the  integration  contour.  Taking  the  identities 

into  account, we can  write  the  equations of the  curve  defined by Equations 24 in  the  parametric  form: 

where s is a variable  parameter.  Considering  the  inequalities 

X Z L O ,   y 2 ? 0 ,  z 2 L 0 ,  

we  conclude  from  Equations 26-28 that s must satisfy the  conditions 

p < s < q ,  (29) 
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and that the two  inequalities 

are satisfied  for p ,  q ,  and r .  

Taking  into  account the symmetrical  form  with  respect  to the z-axis of the contour of integration 
and the fact that p = 1 on this contour, we can  write  Equations 14-16 in the form: 

as3 = 2 s  x y z  [ d ( l o g y )  - d ( l o g x ) ]  . (33) 

Now theintegral is taken  along  the first quadrant of the contour. On the first quadrant  we  have y = o 
for s = q and X = o for  s = p; and the integration is performed  in  the  positive  direction  from  the  point 

to  the  point 

We deduce  from  Equations  26-28: 

In the first quadrant of the contour,  we  have 

10 



When  Equations 34-37 are taken  into  consideration,  Equations 31-33 become: 

a22 = - IqP ( p - q )  ( q - r )  G T G T K F T  * )‘p4‘ Cis 
(39) 

The  sign of the  square  root is chosen  to be negative  in  order  that  the  conditions al l  < 0 , Cp,, < 0 

~p~~ > o be satisfied. As before,  the  integration is performed  in  the  positive  direction  along  the first 
quarter  of the  contour.  Putting 

Let  u s  now introduce  in  place of s a new independent  variable u7 by means of the  equation 

where p (  u ) is the  Weierstrass  elliptic  function  satisfying  the  equation 

Equations 41-43 now become 



s - r = p ( u )  - el , 

The  process of integration  in  Equations  38-40 is performed  in  the  positive  direction  from s = q 

to s = p. We have  for s = q 

and  for s = p 

Consequently  in  the first quarter  of the  contour  the  p-function is decreasing  and p’  ( u )  < 0 ,  o r  

Substituting  Equations  44-48  into  Equations  38-40,  we  deduce 

p ’ *   ( u )  du 
@ 3 3  - ( p ( u ) - e 3 )   ( p ( u ) - e 2 )  ’ 

where  the  integration is still  performed  in  the  positive  direction  over  the first quarter  of the  con- 
tour.  Substituting  the  value of p’ ( u )  given by Equation 43, w e  obtain: 

12 



where 

and  the  path of integration is the  same as for  Equations 49-51. The  complete  contour is described if 
the  parameter u var ies   f rom a certain  given  value u = u,, to u = u,, + h, where 2~ is the real period 
of p ( u ) :  

w = Jee 
dx 

i 4 (  x - e l )  ( x  - e2) (x - e,) 
3 

Taking  into  account  the  fact  that in our  case  the  integral  over  the first quarter  is equal  to  one  fourth 
of the  integral  taken  over  the whole  contour, w e  have  from  Equations  52a,  53a,  and  54a: 

Taking  into  account  the  relations 

17 = < ( w )  I 

between  Weierstrass  functions,  we  deduce  from  Equations  52b, 53b, and 54b: 

13 



Eliminating e l ,  e 2 ,  e3  from  the  previous  equations by means of Equations 41,  we obtain: 

Putting 

and 

The  next  step  will be to   express  @ in t e rms  of the  fundamental  dyadic 

e = -  t - t -  
i i  j j l i k  
P q r  

and in t e rms  of its invariants 

The  dyadic @ is closely  associated  with  the  cone; its components  in  the  inertial  system  and its in- 
variants  (in  terms of these components)  can  be easily deduced. If the  dyadics @, M , N are expressed 
in te rms  of and  its  invariants,  then  the  components of @, M and N in  the  inertial  system can be ob- 
tained  with no difficulty.  Our  final  goal  in this section wi l l  be  to  obtain an expression  for @ and F, i n ,  

t e rms  of invariants of the  cone,  and  in  the  system  defined by the  unit  vectors P‘, U’,l:’ .  

14 



The  dyadic h4 can  be  written  in  the  form of a determinant  with  dyadical  elements: 

Putting 

we  deduce  from  Equation 68 that 

M .  = c  

A I O  

k:- 2k, k, 3 

where I is the  idemfactor 

I = i i  t j j  + k k .  

Taking  into  account  that 

and also that 
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w e  deduce from Equation  69  that 

However, it follows from Equation 41 that 

e 3 - e Z  - p - q ,  

e l - e 3  - r - p ,  

e z - e l  = q - r ,  

and  thus  Equation 71 becomes 

The  expression ( e ,  - e,)’ ( e ,  - e 3 )  (e, - e , )  is  the  discriminant of the  equation 

4 ( x - e l )  (x-.,) ( x - . , )  I 4x3 - g z x  - g ,  = o , 

where 

- g, 3 . (e l  e, + c 2  e 3  + P, e l )  , 

g 3  = .4e1 e ,  e ,  I 

and g,  and g 3  are expressible as invariants of the  dyadic 8 .  

We know, from either  the  theory of elliptic  functions o r  the  theory of equations,  that 

16 
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where 

It follows  from  Equation 72, by taking  the  form of the  discriminant  (Equation 73) into  consideration, 
that 

n 
16 

M = ( 9 k 3 - k ,   k , )  A 

t 2(31c2-k:)k3 0 . 

Thus  the  dyadic M is expressible as a linear  combination of dyadics h = @ - l ,  I ,  and 0 .  The left side 
of Equation  75a  will  be  designated by pin  accordance  with  Halphen’s  notations: 

The  dyadic N (Equation 62). like M, can  also be written  in  the form of a determinant  with  dyadical 
elements in the first row.  From  Equation 62 we  have 

” 
N 
c -  

We deduce  from  Equation 76 that 

- .  N 
C 

1 1 1 

and from  Equations 7 3  and 75b we  obtain 

p i i  q j j  

P 9 

1 1 

r L I< 

r 

1 

h I 

kl 3 

k2 
k3 

3 -  

- M 
C 

0 



The  value  of  the  determinant  in  the left side of Equation 77 is 

2 - .  
P q r   [ ( p 2 + q 2 + r 2 )  - ( p q + q r + r p ) ]  

2(k: - 3k,)  - - 
k3 

as can  be  shown  very  easily.  Substituting  the  above  value  into  Equation 77 and  taking  Equations 73 
and 78 into  account,  we  have 

A I P 

k l  3 0 

3 
k2 1 h  

k3 16 k, 
"- 

By taking 1/C in the form  (from  Equations 7 0  and 73) 

" 1 -  1 n 
C 

- 
16 * ( p - q )   ( q - r )   ( r - p ~  ' 

we  finally  obtain  from  Equation 79 

n 1 1 
1 6 q N  = 2(k: - 3k2) *[%A ( k 1 1 - 3 A )   + ( k , k , - 9 k 3 ) p ]  

In  proving  Equations  75a  and 80 we followed  Halphen's  reasoning  closely,  using  dyadics  instead  of 
quadratic  forms. We have  shown  that  the  dyadic N, like M, is a linear  combinationof  three  fundamental 
dyadics (A, I ,  0) with  the  coefficients  dependent upon the  invariants of 0 .  

In our  proof  we  used  the  system of principal  axes of the  cone,  but  the  use of dyadics  leads  im- 
mediately  to  the  conclusion  that  the  properties of M and N expressed by means of Equations  75a and 80 
exist in cozy system of coordinates. 

Equations  75a  and 80 can  be  written  in  the  form: 

16 6 
F A = - - -  4 [ ( 9 k 3  - k ,  k , )  A + (k ;   k ,  - 2k:- 3k1 k 3 )  I 
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N =  
1 

2(k: - 3k,) [ ( k 1 1 - 3 h ) K 3  + ( l c l k 2 - 9 1 c 3 )  M I ,  

where, as before, 

= ( p - q ) ’   ( q - r ) ’   ( r - p ) ,  

1 6 ( 6 k - 2 7 g , 2 )  . 
1 

Now, the  discriminant of any  cubic  equation of the  form 

x3 + 3, x2 + a, x + a, = o 

can be wri t ten  as  

a:  a,’ - 4 a: a, + 18 a ,  a 2  a 3  - 4a23 - 27 a t  . 

For  the  equation 

In addition,  from  Equations 4 1  and  65-67, w e  have 

- -  4 g ,  1 -  - ( p - p , )  1 ( q - 3 k 1 )  1 + ( q - i k , )  ( r - p , )  1 + (.-3k1) 1 ( P - T k J  1 ’ 

- -  1 
4 g 3  = ( p , - p )   ( + k l - q ) ( $ k l - r )  

1 

and, after some  transformations, 

4 
g,  = 3 ( k , 2 - 3 k 2 )  , 

4 
g ,  - - _  27 ( 2 k : - 9 k 1   k 2 + 2 7 k , )  . 



The  next  step  will  be to obtain  an  expression  for @ in t e rms  of the  invariants of the  cone. 

We deduce  from  Equations  63,  82, 84  and  85  that 

A second  form of Equation 86 that wi l l  be  useful  in  further  exposition is obtained by eliminating M in 
favor of p :  

2 %  + -  - ( k l I - 3 h ) w  * 
g 2  1 

At this  point it will  be  convenient  to  attach  to @ the  factor 

f m '  I Y I  
n a '   b ' h y  

which was purposely  omitted  throughout  the  exposition  starting  from  Equation 22. Taking  (Equa- 
tion  20b) 

into  account  and  defining 

w e  obtain  from  Equation 87: 

Now we can  express  the  disturbing  force F,, averaged  over  the  orbit of the  disturbing body, by 
the  formula 
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or 

where @ is now given by Equation 90. 

In a following  chapter  we  shall  derive  expressions  for  the  coefficients A and B in t e rms  of invari- 
ants of 0. 

ON THE  FORM OF THE  BASIC  DYADIC d 
IN  TERMS OF INVARIANTS OF e 

Let  us  choose  the  system (P', Q' , R ' ) ,  with  origin  in  the  center of the  r ing,   as a basic  reference 
system.  Let ( a , , 8 ,  y), as before,  be  the  coordinates of the  apex of the  cone, (6, 'I, c )  be  the  co- 
ordinates of a point of the  cone  and (xo,  y , ,  o )  be the  coordinates of the  intersection of the  generating 
line,  passing  through (6, 'I, 5 ), with  the  ring.  Thus  we  have 

and 

x: Y :  
. I 2  b ' 2  - 1 .  - + -  - (93) 

If the  origin of the  coordinates is transferred  to  the  apex,  then  the  coordinates of a point of the 
cone  become 

and from  Equation 92 we  have 

- 
- 

a z  - y x  
Z 

and y o  - - B z  - YY . 
Z 

Substituting  these  values  into  Equation 93,  we  obtain  the  equation of the  cone  in  the  form 

" z2 (az-yx)' ( p z - y y 1 2  
Y 2  a I 2  y 2  

- 
bI2 y z  

= 0 .  (94) 

The  divisor y 2  is introduced  for  reasons of homogeneity  and  the  condition 

P'9cr 
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requires  an  arrangement of signs as in  Equation  94.  Therefore  this  equation  can  also  be  written  in 
the  form: 

where 

w = x€” t yQ‘  t z R ’  

and 

By again  introducing S ,  the  position  vector of the  apex  with  respect  to  the  center of the  ring 

we can  write  the  dyadic o (Equation  96)  in a contracted form: 

e =  s x y ’  Q’ x s s x P ‘  P’ x s R ’  I:‘ 
8’2Y2 

t 
b I 2  y 2  

t”  
Y 2  

which is more  convenient  for  the  computation of invariants. 

The  form of o which  we  have  used  previously  was 

@ = -  
i i  jj h b  
P 9 ‘  

t - t -  

(95) 

and it  referred  to  the  principal  axis of the  cone. 

In the  process  of  computing  the  invariants  we  will follow the  classical Gibbs notations  (Refer- 
ence 7 )  closely. 

If a dyadic X i s  given  in a reduced  form, 

X = a 1  t L m  t c n ,  (98) 

then  the  adjoined  dyadic x, and the  invariants x5, (x,) , x3 a r e  given by the  formulas  (Reference 7): 

22 



The  reciprocal  dyadic is given by the  formula: 

Substituting  into  Equations 99-103 f i rs t  

and  then 

1 i ,  rn j ,  11 = I;, 

we colnpute e,, (3 ,  , (02)  B ,  0, , and 0 - l  using  both  forms of 0 as given by Equations 97 and 64, and  com- 
pare  the  results.  After the substitution and some  easy  vectorial  transformations  based on 

are performed, we obtain: 
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From  Equations  106- 108  we  deduce  expressions for the  invariants k l  , k 2  , k 3  : 

The  value < in  Equation  90 is positive.  Consequently, from Equation  112, 

= a ' b '  IyI. 

Substituting  this  value  into  Equation 90, we  obtain a final  form  of 0: 

where 

1 
u -  - A - 7 k 1 I .  (1 14a) 

The  expression  (Equation  91)  for  the  disturbing  force  averaged  over  the  orbit of the  disturbing body 
now becomes 

F, = - 2 f m '  ( A p -  r + B v *  r )  . (1 14b) 

Using  Equation 96 we  can write @I in the form 

k, @ = - b '2y2  p' p' + b ' 2 a y  P ' R '  
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In a s imilar  way, from  Equation  109 we obtain 

A = ( a , - a " )  P' P' + a/3 I" Q' + a y  P' H '  

+ ab Q ' P '  + ( p z - b " )  Q ' Q '  + ,By Q ' H '  

+ a y  K' P' + y,b II '  Q' + y2  R '  R '  ; 

and  in  addition  we  have 

NOW, substituting  the  results  given by Equations  115-117  into  75a  and  114a,  we  obtain /L and v in 
the form of Halphen's  matrices 

- 
'11 P 1 2  h 3  

i'" "12 " -. 

13 

= i V 2 1  v 2 z  v 2 3  

where 

pl l  = ( 9 k 3 - k , k 2 )  ( a 2 - a J 2 )  + k ,   ( k l I C 2 - 3 k 3 )  - 2k,' + 7 g ,  b I Z y 2  , 
3 

pz2 = ( 9 k 3   - k ,   k 2 )  (a2 - b ' 2 )  + k ,  ( k l   k ,  - 3 k 3 )  - 2k,' + 7 g ,  a J 2 y Z  , 3 

lIIlll11lIIIl111l1lIIIllIlIlll111l1l11lll1l111llllIIlIll1111llIIlIlIlllIIl111111llIIlIl1l1lll1ll1l1111l1l1111lll1l11111 I I 
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and 

v33 = y2 - - k 1 
3 1 '  

The  decomposition of @ in the  system (P', Q ' ,  R ' )  takes  the  form 

aij  = 2 f m '  ( A p i j  + B v i j )  

Putting 

we  obtain a decomposition of -F,: 

The  system of Equations 124-  126 gives  Halphen's  decomposition of F, along  the  axes (P', Q'  , R ' ) .  
Here,  however,  the  author would like  to  suggest a slightly  different  system of formulas,  which  might 
be  simpler  to  program  for  computers.  This  system is based  on  decompositions of 0 and A as given 
by Equations 97 and  109.  Putting 

(a1) = k 3 P '  o - r ,  

(02) = k 3  0' - o - r , 

(e3)  = k, R '  * 0 - r ,  

26 



and taking the  equations 

s = r t a l e '  P'  , 

s x r = a '  e '  P '  X r 

into  account,  we  deduce from Equations 97 and 109: 

n 

" 

3 
2 g2 I Im31 
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' 1  

By taking  Equations  75a,  75b  and  114a  into  account,  the  expressions  for  the  components F,, FO2' F,, 

take a more  concise  form: 

F,, - 2 f m '  ( A m 2  +13n2)  , 

F,, = - 2 f m '  (Am, + B n,) . i (134) 

EXPRESSIONS FOR THE  COEFFICIENTS A AND B IN  TERMS 

OF INVARIANTS OF e 

In this  chapter we present  Halphen's  theory  concerning  coefficients A and B with some  modifica- 
tions  which  speed up convergence of the  series.  Our final  goal  will  be  to  express  the  coefficients ,I 
and B (as given by Equations 88 and89)  in  terms of invariants k, , k,,  k, of 0. In order  to  do so  we 
have  to  make  use of some  theorems  from  the  theory of the  Weierstrass  elliptic  functions. We have  the 
basic  relations 

p ' 2  ( u )  = 4p3 ( u l  - g , p ( u )  - g, 7 (135a) 

and we also  make  use of the  equation 

(Reference  8, p.  393). 

From  the  defining  equation  for  the  <-function, 
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w e  deduce  that 

but 

and  Equation 138 can  be  written  in  the  form: 

Substituting  this  result  into  Equation 136 we  obtain 

Introducing  Halphen's  linear  differential  operator D, defined by the  equation 

2 d 
= 12g3 3 g2 d g 3  

d + -  2 - ,  

we can  write  Equation 141 in  the  form: 

9ifferentiating  this  result  twice  with  respect  to u and  taking  the  defining  Equations 137 and 139 into 
iccount, we deduce  that 

D p ( u )  2 p '  ( u )   < ( u )  - 2 p 2  ( u )  + p" ( u )  - g ,  
1 

I'aking Equation  135b  into  account,  we  can  reduce  the last result  to 

D p ( u )  = 2 p '  ( u )  5 ( u )  -t 4 p 2  ( u )  - x g 2  . 2 
(146) 
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Differentiating  Equation  146  with  respect  to u we  obtain 

If we  have a function F of g ,  , g, of the  form 

w = F ( v ,  E , ,  g,) , 

and if v = @(g, ,  g , )  is also a function of g , ,  g, , then 

Dw = ~ D v  + DF 
JF 

In  forming CF on  the  right  side of the last equation  we  consider v as a constant. 

Designating, as before,  the  half of the real period by GI, we  have 

P' ( w .  E , ,  g 3 )  = 0 I +i = 5 ( w  g , ,   g , )  ' 

Putting v = W ,  w 0 , F = p '  ( w ,  g,, g,) into  Equation  148,  we  obtain 

p" ( w ,  g, ,  g , )  Dw + D p '  ( w )  = 0 ; 

and  from  the last equation  it  follows, by taking  Equations 147 and  149  into  account,  that 

P "  ( W ,  E , ,  g 3 )  ILJ + 2 T P "  p4 g , ,  g 3 )  = 0 

or  

lh = - 2 7 7 .  

Setting w = T ,  F = ( ( v ,  g,, g 3 ) ,  v = w in  Equation  148,  we  have 

(149: 

(150a' 

(150b 

From Equation 144 it  follows, by taking  Equation  149  into  account,  that 

1 
DL(rd,  g,,  g , )  = - ~ T P ( W ,  g,,  g 3 )  + 6 g 2 w  . 

Substituting  this  into  Equation  150b  and  taking  Equations 139 and  150a  into  consideration  we  obtain 
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or, finally 

1 
Dq = + z g z w .  

Writing  the  formula 

in  the  form 

we  conclude  that i f  the  argument u is considered  to be of the first dimension,  then g, is of the  minus 
fourth  dimension  and g, is of the  minus  sixth  dimension.  The  discriminant A = g,” - 27 g:is of the 
minus  twelfth  dimension  and  the  absolute  invariant J = g,”/ A is of zero  dimension.  The real semi- 
period  w,being  an  argument,  can  be  considered  of  the first dimension  and,  consequently,~ = is of 
zero  dimension.  The  function P(U, g,, g 3 )  is of the  minus  second  dimension and  then < ( u ,  g ,  , g, ) , 
because of the  equation <‘  ( U  1 = - P [ U )  , must  be of the  minus first dimension; in particular, 7 )  = < ( u  1 
is also of the  minus first dimension  and,  consequently, Y’ = qA-l/12 is of zero  dimension. AS a conse- 
quence x and y ’  can  be  treated  as  functions of only the  absolute  invariant J .  By applying  the  operator 
D to A and J ,  we deduce  that 

Eliminating g, and g, by means of the  equations J g:/ A and J - 1 = 27 g;/A, from  Equation 152, w e  
obtain 

DJ = 4 J2l3 ( J  - . (153) 

We have,  taking  Equations 152 and 153 into  account: 



By substituting Dw = - 271 = - 2A1/ l2y'  (Equation 150a and  definition of y ' )  into  Equation  155  and  com- 
paring the result thus  obtained  with  the  result  given by Equation  154,  we  have 

" 
dx 1 
dJ 

- " ( J -  1 ) - 1 / 2  ~ - 2 / 3  y '  . 
2 ,'5 

Taking  Equation  151  into  account  we  deduce  that 

Comparing the two values of DY', as given by Equations  157  and  158,  we  obtain 

If we  put 

1 

2 i - 3  
- ( J - 1 ) - 1 / 2  ~ - 2 / 3  Y' Y ,  

then  Equation 156 takes the  form 

dx 
" dJ - - Y *  (162) 

Eliminating y '  from  Equation  160 by means of the  defining  Equation  161, we  deduce  that 

1 4 4 J [ J - l ) d ~ f   2 4 y ( 7 J - 4 )  - x = 0 .  dY 
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Eliminating y by means of Equation  162,  we now have 

J ( ~ - J I , + ( ~ - Z J ) ~ - ~ ~  d 2 x  dJ 2 7 dx 1 = 0 .  

The last equation  has  the  form of the  hypergeometric  equation 

with a = p = 1/12 and y = 2/3. Differentiating  Equation  163  and  again  taking  Equation 162  into  ac- 
count,  we  obtain a hypergeometric  equation  for y : 

with a = p = 13/12 and y = 5 / 3 .  

For  the  purpose of determining  the  coefficients A and B (as given by Equations 88 and 89) it  will 
be  convenient  to  use 

and 

= 77g2-'/4 

rather  than X and y .  The  next  problem  will  be  to  determine  hypergeometric  equations of which X and 
Y are solutions. 

Eliminatingw, 77, g2  from  Equations 166  and 167  in favor of x ,  y , J by using 

and  Equation  161, we obtain 



Also,  we  introduce 

E = -  J -  1 
J 

as a new independent  variable  instead of J .  

The  transformation of Equation 164  by the  introduction of X instead  of X and of 8 instead of J is 
a transformation of the  form y = x - ~ z ,  u = (X - l)/x applied  to the hypergeometric  equation 

x ( 1 - x )  y "  + [ y -  ( a + p +  1) x ]   y '  - apy = 0 . 

We have X = 1/( 1 - U )  ; and by substituting 

y = ( 1 - u ) "  2 , 

into  the  original  equation,  we  deduce a hypergeometric  equation 

with 

In  our case a = p = 1/12, y = 2/3, and a, = 1/12, p, = 5/12, y, = 1/2, and  the  hypergeometric  equa- 
tion of which x is an  integral  is 
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A hypergeometric  equation 

x ( 1 - x )  y" + [ y - [ a t p t l )  x]y' - apy = 0 

has  the  integrals 

If y = a + p ,  then  the two last  integrals  coincide  and  an  integral of the form 

y 5  = F ( a ,  P, 1 ,   1 - x )   l o g ( 1 - x )  + Z ( 1 - x )  (176) 

will  appear  instead of the  integral  given by Equation  175.  The  function Z (  1 - X )  is developable  into a 
Taylor  series in  powers of 1 - X. 

For Equation  171  the  general  integral  can  be  written  in  the form 

or  in  the  form 

where 5 = 1 is a critical  logarithmic  point. 

However,  for 5 = 1 we  have, from Equation  170, J = and,  consequently, A = 0. Thus,  the  case 
5 = 1 corresponds  to  the  case of a double  root of the  equation 4x3 - g , x  - g ,  = 0 ; and  these roots 
become 



Substituting  these  roots  into  the  formula  for  the  real  semi-period 

we  obtain 

n - 

or  

x = w 4 f i  = - 4m 
n 

for 6 = 1 . 

Thus  the  value 5 = 1 cannot  be a logarithmic  singularity of X and,  consequently,  the  value of C2 in 
Equation  178  must be zero.  The  integral of Equation 171, which is of interest  to  us  can be written 
either in the  form  given by Equation 177 o r  in  the  form 

Putting 5 = 1 and  taking  Equation  181  into  account, we obtain 

A linear  relation  must  exist  between  the two expressions  for X (as givenby  Equation  177  and  183), 
which will  help  us  to  determine  the  values of the  constants M and N . We can  use  the  following  relation 
between three  solutions of the  hypergeometric  equation: 

which is the form given by Erdbly  et al. (Reference 9). By inserting  into 
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f i rs t ,  z = y and  then z = y - 1, we  obtain 

Putting first n = 3 ,  z = - 1/12, and  then n = 3 ,  z = - 1/4 into  the  Gaussian  formula 

we  obtain 

We also have 
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and 

Substituting  these  values of gamma-function  combinations  into  Equation  186,  we  obtain 

Multiplying  both s ides  of the last equation byT/4+ and  taking  Equation  183  into  account  we  have 

and 

In order  to  simplify the last equation  we  shall  make  use of the  B-function: 

n u )  r(v) . 
B ( u ,  v )  = r(u t v )  

Setting,  in  the last equations, first 

- 1  - 1  
4 '  V "  2 u -  - 

and  then 

we have 

38 
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u - 4 '  V "  - 

2 '  



Taking  into  account 

1 r(+) = I-(+) 

and 

and  introducing a new variable y = ,E instead of X ,  we have 

And Equation  188  takes the form 

where 

A ,  = lo1 * - - 1.311028777146 - * 1 

B, = 
x ’ d x  

- 0.599070117367 - * ’ 

Halphen  used ~ ( 5 )  = X 0  instead of X. From  Equation  191 we  have 



11ll111l1lll1l11l1llIIll 1 1 l 1 l 1 l 1 l 1 1 1 ~ ~ 1 1 l 1 1 1 1 1 1 1 1 l l l l 1 1 l 1 1 1  111lIl 

and from  Equation 183 

"(5) = C I F ( ~  I E 9 1 ,  1 - 5 )  3 

1 5  

where C, = d 4 f l  Goriachev  used  both  forms of Y(E). 

Equation  192 is convenient i f  5 2 1/2 and  Equation  193 is preferable i f  5 1/2. However, 
remembering  that a hypergeometric series converges  rather  slowly, we shall find it more  convenient 
to  transform  Equation 193 to a fast  convergent  form  and  to  use  the  transformed  series  throughout 
the  interval 0 5 5 5 1 . 

By applying  the  Goursat  transformation  (Reference 6)  

to  Equation 193, we  obtain 

The  hypergeometric  series  which  appears  in  the last equation is an  alternating  series and its conver- 
gence  can  be  sped up considerably by applying  the  Euler  summability  process. 

The  general  formula of the  Euler  summability  process as applied  to  the  series a,, + a l  + a 2  + a 3  + - 
can  be  written  in  the  form  (Reference  10): 

For the  hypergeometric  series 

the  formula  (Equation  195)  takes  the  form: 
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Here,  we have a = 1/6, ,B = 1/6 and y = 1. A high  degree of approximation is already  obtained  by 
setting N = 3 and m = 19. The  final  result is: 

X ( + 2.3870942 
- 0.0663082 w 
+ 0.0225632 w2 

- 0.0117691 w3 
+ 0.0073743 w4 

- 0.0051060 w5 
+ 0.0037250 w6 

- 0.0027325 w' 
+ 0.0019070 w8 

- 0.0011936 w9 
+ 0.0006337 w10 

- 0.0002710 wl' 
+ 0.0000884 wl' 

- 0.0000205 wl' 
+ 0.0000030 wl' 
- 0.0000002 w15 ) ' 

where 

and  the  convergence is fast.  The  program  written by A. J. Smith, Jr. of the  Theoretical  Division, 
Goddard  Space  Flight  Center  makes  use of Equations  196  and  207.* 

A comparison of Goriachev's  computations  for  the  minor  planet (1) Ceres  (done  on  the  basis  of 
Equations  192  and  193)  with  the  results  obtained by Smith  using  Equation  196  shows a complete  agree- 
ment  between  the two methods of computation.  The  coefficient B (Equation  89) 

* T h i s  program w i l l   b e   d i s c u s s e d  io the  following  Part 2 of this   treatise ,  by A. J. Smith, Jr.  
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which appears  in  the  expression  for  the  dyadic 0 (Equation  113)  and  in the expressions  for  the dis-  
turbing  force F, (Equations  114b  and  134),  can now be  put  into  the  final  form. We have,  taking 
Equation 196 into  account, 

We have  still  to  form a convenient  expression  for  the  coefficient A (Equation  88) 

We have 

and by considering  Equation  153 we deduce 

We also have 

and Dw = - 27) (Equation  150a). 

Let  us now apply  the operator D to w 4K = Y(t1. Taking  Equations 201, 202, and  150a  into  ac- 
count, we deduce  that 

42 



o r  

and  thus 

144 g ,  fl 
n9; 'Jpl 

A =  I' ( E )  * 

Now by applying  the  formula 

to ~ ( 6 )  as given by Equation  193 we obtain  a  value of Y '  ( 5 )  which  may  be  substituted  into  Equation 
203  to  yield 

Taking  the  equation 

nto  account,  we  deduce from Equation 204, by eliminating g 3  in  favor of 5 and g,, that 

By applying  the  Goursat  transformation 

z ( 1  - =)-I/, 
(1 + y ) ( F 2a- 1 ,  a - P +  T ,  a + P -  - - 

1 
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I 

to  the  hypergeometric series in  the  right  side of Equation 205, we obtain,  finally, 

The  Euler  summability  process  can  be  applied  to  the  hypergeometric  series of the last equation. We 
have 

- - F ( d ’  6 ’  2, - w )  = -3.7991784 
5 1 7  

‘0 + 0.3693646 w 

- 0.1556119 w 2  

f 0.0889726 w3  

-0.0586828 w 4  

f 0.0419870 w s  

- 0.0313364 w 6  

t 0.0233758 w’ 

- 0.0165247 w a  

+ 0.0104483 w9  

- 0.0055933 w10 

f 0.0024083 w l1 

- 0.0007898 w12 

+ 0.0001837 w13 

- 0.0000268 w14 

t 0.0000018 wl’ , 

EQUATIONS FOR  SECULAR  VARIATIONS OF ELEMENTS 
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d i  - 
d t  

m '  
M + m  

na 

J G - 2  
Z r c o s   ( v + w )  ; 

Let S o ,  T o ,  z, be  the  values of S , T , Z averaged  over  the  orbit of the  disturbing body: 

Averaging  the  equations for the  variation of elements  with  respect  to g and g '  and  taking  the  equations 

r c o s v  = a c o s  E - a e  , 

r s i n v  = a 41 - e' s i n E  , 

r = a - a e c o s E  , 

E - e s i n E  = g ,  

dg = $ d E  

into  account,  we  deduce  the  following  equations for  secular variations of elliptic  elements: 

_"  da 
d t  - 

2m' na3 
M + * & JOzr ( e S o  s i n E + T o  ) " e z )  d E  ; 
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d i  
d t  - 
" 

m' ,az 

( M + m )  
. $ l o z n Z 0  [ ( c o s E - e ) c o s w  - 41 - e' s i n E s i n w  1 d E  ; 

dR rn' na2 
s i n  i = - & / ' " Z O $ [ ( c o s E - e )   s i n w  + 4- s i n E c o s w ] d E  . 

( M + m )  0 

The  values of so, T,, z, are computed  analytically by using the formulas  developed  in  the  previous 
two sections.  The  integrals  with  respect  to E a r e  computed  numerically by giving F, a se t  of  particular 
values  conveniently  distributed  over the orbit of the  disturbed body. 

The  secular  variation of da/dt is zero  in this theory  and  in the process of  computation the small- 
ness  of da/dt will  determine the range of validity of the theory  and, at the  same  t ime,  serve as a check 
of the  accuracy of the  computation. 

CONCLUSION 

The  collection  of  formulas  given in  Appendix A was  programmed  for  the  actual  computation of 
long  range  effects in the motion of artificial  satellites and minor  planets  using  step by step  integra- 
tion.  Halphen's  method  can  be  especially  useful when near-resonance  conditions  arise. In this 
case difficulties are caused by the presence of a small   divisor of the  form i t i '  i' + j R + j ' R ' i f  

the problem is treated analytically. 

In the case of an artificial satellite  Halphen's  method  might  give  information on the long  range 
effects and the stability of orbit  over the interval of approximately 15-20 years.  In the case of minor 
planets, it can  supply  information  about  the  long  range  ("secular")  effects  in  the  elements  over  intervals 
of  hundreds of thousands of years;  the  integration  step  can  be  taken  to be  100-500 years.  We assume 
that no sharp  commensurability  between  mean  motions of the  disturbed  and  disturbing  bodies  exists. 
The  secular  variations of the elements of the  disturbing  bodies  are  also  taken  into  consideration. 
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Appendix A 

COLLECTION OF FORMULAS 

I. Elements of the  disturbed  planet: 

Elements of the  disturbing  planet: 

gi. a', n ' ,  i ' ,  w' R', e ' ,  b ' ,  . 

11. 

PY QY  RY 

+ cos fl - s i n  R 0 0 

0 + c o s  i - s i n  i 

0 + s i n  i + c o s  i 

+ c o s R '  - s i n f l '  0 

+ s i n f l '  + C O S  fl' 0 

0 0 +1 

[ + c o ; w  -si;w +] 
- + s i n w  +cos w 

0 +cos w' - s i n w '  0 

+ s i n w '  +cosw '  0 

0 0 +1 

111. For example, for E = O", lo", 20", . . . , 350": 

Ijl = 

IV 
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g, = 27 (2k: - 9k, k, -t 27k,) 
4 

k, = 9k3- k ,   k ,  , 

k, = k , ( k ,  k , -3k3)  - 2k,’ . 

V. 

V ( 5 )  = (*) x 
1 / 6  

X (+ 2.3870942 
- 0.0663082 w 

+ 0.0225632 w2 

- 0.0117691 w3 

+ 0.0073743 w 4  

- 0.0051060 w 5  

+ 0.0037250 w 6  

- 0.0027325 w 7  

t0 .0019070 w 8  

- 0.0011936 w 9  

+ 0.0006337 w10 

- 0.0002710 w l l  

-t 0.0000884 wI2 

- 0.0000205 w13 

+ 0.0000030 w14 

- 0.0000002 w15)  

x ( -  3.7991784 
+ 0.3693646 w 

- 0.1556119 w 2  

t0.0889726 w 3  

- 0.0586828 w 4  

t 0.0419870 w5 

- 0.0313364 w 6  

+ 0.0233758 w 7  

- 0.0165247 w 8  

+ 0.0104483 w9 

- 0.0055933 w10 

+ 0.0024083 w l l  

- 0.0007898 w12 

-t 0.0001837 w 

- 0.0000268 w I 4  

+ 0.0000018 w15) 
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a l l  = k, ( a z - a J 2 )  + k,  + T -  3 g2 k 3  
a f 2  

azz  = k 4  (,Bz - b t 2  ) + k, + T -  3 

3 g 2  k 3  

b J 2  

a =  = k, y z  t k, t g ,  (a2 b'2 + p z  - 3 
a "  b I 2 )  , 

A i j  = A j i  . 

VII. 

VIII. 

1,  2 ,  3 )  
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X - -  
a~ - r '  

- Y  P ,  - - r '  

z 
Y, = T '  

a ,  = Y, P3 - P ,  Y3 

P ,  = al y3 - Y l  a3 

Y, = P ,  a3 - a ,  P3 

IX. 

X. 

- da - - ~ + m  - &lozn ( e S o s i n E + T o  G ) d E  , d t  
2m' ,a3 

" 
dn m '  na2  41 - e' 
d t  - - S o  ( c o s E - e )  + To * $)/rz s i n E ] d E  t 2 s i n z ~  9 ( M + m )  e 

i d R  

52 NASA-Langley, 1963 G-3 19 


